罗利军(首席科学家)
所属部门: | 中心领导 | 专业: | 遗传育种 |
学历(位): | 博士 | 技术职称: | 研究员 |
电话: | 邮件: | lijun@sagc.org.cn | |
现任职务: | 首席科学家 |
简历介绍
罗利军,上海市农业生物基因中心首席科学家,长期从事农业基因资源的保护创新与评价利用研究,取得了节水抗旱稻从0到1的重大突破。获得国家科技进步一等奖2项、国家技术发明二等奖1项、何梁何利科技与技术进步奖以及上海市科技进步或技术发明或科技普及一等奖5项。获授权专利或新品种权101项,育成新品种47个,培养硕博士研究生和博士后150名,发表论文320余篇,入围Elsevie“中国高被引用学者”。荣获“全国杰出专业技术人才”称号、“全国创新争先奖”奖状。
研究方向
遗传资源
研究领域
农作物遗传资源的保护创新与研究利用,节水抗旱稻的理论与实践。
获奖情况
主持荣获2020年度国家科技进步一等奖、2013年度国家技术发明二奖1项。
主持荣获上海市科技奖励一等奖5项。
获上海市自然科学牡丹奖 。
研究成果
1、栽培稻节水抗旱性研究在国际上首次提出了发展“节水抗旱稻”的战略构想;建立了国际先进的的作物抗旱性研究平台;构建了栽培稻节水抗旱核心资源;鉴定克隆了50个抗旱相关基因;选育出包括籼型、粳型、常规和杂交四个系列的节水抗旱稻新品种(组合);通过国家审定,在生产上大面积推广。
2、水稻重要性状分子遗传与超高产育种定位了一批与水稻产量及其构成因子、稻米品质、抗病相关的主效QTL;提出了水稻杂种优势的分子遗传研究;提出了我国杂种优势利用的技术途径,选育出著名广亲和恢复系中413,在我国首次采用三系法育成了亚种间强优势杂交稻组合协优413,在生产上大面积推广。
3、 主编出版《稻种资源学》《稻种资源学》是第一部系统地对整个稻种资源研究进行高度概括和探索的著作。它全面分析和总结了稻种起源和分化、稻种资源收集、保存、评价、创新和利用的原理和方法,明确地提出了稻种资源研究的方向与任务。《稻种资源学》的出版,是稻种资源研究过程中的里程碑,标志着稻种资源研究已经形成为一门独立的学科。
论文专著(代表作)
1. 稻种资源学 湖北科学技术出版社
3. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. Molecular Plant. 2022 D O I:10.1016/j.molp.2021.12.001
4. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition. Journal of Cleaner Production.2021,315:127992
5. 水稻愈伤组织超低温保存体系的建立. 植物遗传资源学报. 22(5):1219-1227
6. Overexpression of OsHMGB707, a High Mobility Group Protein, Enhances Rice Drought Tolerance by Promoting Stress-Related Gene Expression. Frontiers in Plant Science.2021,12:711271
7. Molecular Breeding of a Novel PTGMS Line of WDR for Broad-Spectrum Resistance to Blast Using Pi9, Pi5, and Pi54 Genes.Rice, 2021,DOI: 10.1186/s12284-021-00537-1
9. 水分胁迫对节水抗旱稻产量形成和根系形态生理特性的影响. 中国水稻科学.2021,35(01): 27-37
12. Transcriptomic divergence between upland and lowland ecotypes contributes to rice adaptation to a drought-prone agroecosystem. Evolutionary Applications, 2020,13:2484–2496
14. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Molecular Genetics and Genomics.2020, 295: 941-956
15. Bidirectional Selection in Upland Rice Leads to Its Adaptive Differentiation from Lowland Rice in Drought Resistance and Productivity. Molecular Plant,2019,12:170–184.
18. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价.作物学报, 2019, 45(11):1764-1769.
19. Fine mapping a quantitative trait locus, qSER-7, that controls stigma exsertion rate in rice (Oryza sativa L.) Rice, 2019, 12(1): 1-10
20. A novel rice grain size gene OsSNB was identified by genome-wide association study in nature population. PLoS Genetics, 2019, 15(5): e1008191
21. Genome-Wide Association Studies of Image Traits Reveal Genetic Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. Molecular Plant, 2018, 11:789–805
22. 节水抗旱稻的培育与应用. 生命科学, 2018, 30(10):1108-1112
23. Differentially methylated epiloci generated from numerous genotypes of contrasting tolerances are associated with osmotic-tolerance in rice seedling. Frontiers in Plant Science.2017, 8:11. doi: 10.3389/fpls.2017.00011
24. Transgenerational epimutations induced by multi-generation drought imposition mediate riceplant’s adaptation to drought condition. Scientific Reports,2017, 7:39843 , DOI: 10.1038/srep39843
25. Alternative splicing complexity contributes to genetic improvement of drought resistance in the rice maintainer HuHan2B. Scientific Reports,2017, 7: 11686 , DOI:10.1038/s41598-017-12020-3
26. Transcriptomic and Metabolomic Studies Disclose Key Metabolism Pathways Contributing to Well-maintained Photosynthesis under the Drought and the Consequent Drought-Tolerance in Rice.Frontiers in Plant Science. 2016, 7:1886. doi: 10.3389/fpls.2016.01886
27. Genetic determination of the enhanced drought resistance of rice maintainer HuHan2B by pedigree breeding. Scientific Reports,2016, 6: 37302.
28. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology,2015, 15:141-153
29. Distinguishing upland and lowland rice ecotypes by selective SSRs and their applications in molecular assisted selection of rice drought resistance. Euphytica, 2015, 206(1):11-20
30. Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice.BMC Plant Biology,2015, 15:218
31. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Journal of Experimental Botany,2015, 66(15):4749-4757
32. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 2014, 46: 398-404
33. OsAAP6 functionsas an important regulator of grain protein content and nutritional quality in rice, Nature Communications, , DOI: 10.1038/ncomms5847
34. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics. 2011, 11(21):4122-4138
35. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.), Molecular Breeding, 2011,28:495-509
36. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43, 1266–1269
37. Breeding for water-saving and drought-resistance rice (WDR) in China. Journaol of Experimental Botany. 2010,61 (13): 3509-3517
38. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet,119:459–470
39. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.) Theor Appl. Genet. 2006 112(4):648-56
40. PlantQTL-GE: a data base system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information. Nucleic Acids Research,2007 35:D879-D882
41. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl. Genet. 2005, 112(1):106-113
42. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158: 1737-1753(August 2001)
43. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158: 1755-1771(August 2001)
用户登录